CLAS Android アプリ KabutoML 操作マニュアル

CLAS製 Gogh, Ritto製 MGLR-9PC/Ri, MGLR-9PC_Ri-AO 対応

2024年8月27日 田中 龍児

してください。

元期の XYH 座標 が表示される

これは観測後にログを取り出し、Google Earth にアップしたものです。 変換の方法は clas.jp のダウンロードページに説明してあります。

16:37 ≵ ነ⊡!	🤋 🛛 🗖
← KabutoML Device: RN	BT-36
パラメータ読込み完 ⁻	了
<u>1.68</u> m 2	▼ 系
1.68 m / 第2系 変	更
ХҮ	Н
-139647.214 -36252.385	53.038
観測終了	
No fix	
2测点名	占記録
受信中	
地図表示	
file 2024082 1635.log WS 232	200221.0
探索点 F. 5 プロ	コット

ログファイル 名と週秒表示

 \bigtriangledown

 (※) ファイルエクスブローラーなどファイルマネージャーの力を借りて探索点FILEを 選択します。ファイルマネージャーがなくても直接FILEを選択できる機種もあります。 ファイルマネージャーがない場合は、Google Playより無料の「FVファイルエクスプロー ラー」をインストールしておいてください。

探索点FILE選択

プロットボタンを タップ

探索点は**灰色**、現在点は **緑色**か**オレンジ色**で表示 される

プロットには、サーチモード(探索点FILEの点を探すモード)と、単なるプ ロットモードの2つのモードがあります。

探索点FILEボタンをタップして生成される(reference.txt)がログファイルと同 じフォルダの中にあり、かつ、受信機の位置と基準点座標が1000メートル以内 ならサーチモードになります。

それ以外は単なるプロットモードになります。

サーチモード

・次のような**探索点座標のテキストファイルを作成**してください。ファイル名は 任意です。

A1,-139658.491,-36251.678 2,-139631.381,-36285.661 3,-139616.303,-36268.739

・Excelなどで表を作成し、CSVで保存すると簡単です。

・タイトルやコメント行がいくつあっても構いません。

・点名、X座標、Y座標 の順(半角のコンマで区切る)ですが、Y座標の後ろに 標高など続いていても構いません。

・探索点数は**100点まで**です。

・PCとアンドロイドをUSBで接続して、

PC > (スマホの名前) > 内部共有ストレージ > Android > data > jp.clas.ml.kabuto > files > Documents

の中に入れてください。

現在の位置と reference.txt の座標が 1000 m 以内なら、次のようになります。

オレンジ色は現在の受信機の位置です。FIX す るとだいだい色が**緑色**に変わります。灰色は サーチする基準点の位置です。 拡大しすぎて迷子に なった場合は、「原点 に帰る」ボタンをタッ プしてください。 最近傍点までの方向角 と距離が表示されます。

これは便利!

任意の点をタップすると、 現在点から東方向、西方 向への距離が表示できま す。

単なるプロットモード

プロットボタンを押した時に、 reference.txt ファイルが入ってないか、あるいは、 現在の位置と reference.txt の座標が 1000 m 以上なら、単なるプロットモードに なります。

CLAS 精度の確認に使えるでしょう。

観測後、 PC と USB あるいは Bluetooth でつないで、スマホの中身を取り出します。

PC > (スマホの名前) > 内部共有ストレージ > Android > data > jp.clas.ml.Kabuto > files > Documents

観測開始〜観測終了ごとに、ログファイルと、元期の平面直角座標値に変換した観測点の CSV ファイルが保存されます。

観測点名を入力しなかった場合は、ログファイルのみが保存されます。

10:48 ∦ ፤⊡፤		<u></u>		10:49 🖇 🕼 👘 10:50 🕷 🗐	ŝ
	×. =		:	テキスト・エディターts/202407101035.log 📋 🚼 テキスト・エディター/202407101035P.csv	
a/jp.clas.ml.kabuto/files/Documents			home:	\$GNRIKC,013544.00,A,3144.3978475,N,13037.0372276,E,0 No.,X,Y,H,FIX. \$GNGGA_013544_00_3144_3978475,N,13037_0372276,E,1_0 No.,X,Y,H,FIX.	
				\$GNRMC,013545.00,A,3144.39 9409,N,13037.0372585,E,0 2,139649.644,-36259.579,41.954,1	
				\$GNG6A,013545.00,3144.3979409,N,13037.0372585,E,1,0 \$GNBUC,013545,00,3144.3979409,N,13037.0372585,E,1,0	
				\$GNGGA, 013546.00, 3144.3980 052, N, 13037.0373284, E, 1, 0	
202407091715.log				\$GNRMC, 013547.00, A, 3144.3980381, N, 13037.0374044, E, 0	
application/octet-stream		1.4K 2024/07	7/09 17:15	SGNGGA,013547.00,3144.3980 81,N,13037.0374044,E,1,0 SGNRHC 013548.00 A 3144.3929851 N 13037 0377765 E 0	
202407091716 log				\$GNGGA, 013548.00, 3144.3979,51.N, 13037.0377765, E, 1, 1	
application/octet-stream		4.4K 2024/07	7/09 17:16	\$GNRIIC, 013549.00, A, 3144.39 9669, N, 13037.03798955, E, 0	
0004070017160				SGN004,015349.00,3144.39/9609,N,1503/03/9895,E,1,1 SGN0RUC.013550.00.4.3144.39/9579.N.1303/0381641.E.0	
202407091716P.CSV text/comma-separated-values		83 2024/07	7/09 17:17	\$GNGGA,013550.00,3144.3979579,N,13037.0381641,E,1,1	
				\$GNRMC,013551.00,A,3144.3979540,N,13037.0382590,E,0	
202407091944.log				\$GNR04, 013552,00, 3144,357,946,7,13037,0382,397,11,1 \$GNR04,013552,00, 3,144,357,9652,11,13037,0383,643,E,0	
application/octet-stream		18.3K 2024/07	//0919:47	\$GNGGA,013552.00,3144.3979 <mark>5</mark> 52,N,13037.0383643,E,1,1	
202407091944P.csv				\$GNRMC,013553.00,A,3144.39 9772,N,13037.0384198,E,0 6GNGGA.013553.00,3144.397072,N,13037.0384198,E,1	
text/comma-separated-values		83 2024/07	7/09 19:47	SGNRNC, 013554.00, A, 3144.3978.0291, N, 13037.0384768, E, 0	
202407101035.log				Senge A, 013554, 00, 3144, 3980 91, N, 13037, 0384768, E, 1, 1	
application (acted atream		20.41/ 2024/07	7/10.10/20	SGNRMC, 013555.00, A, 3144.3981257, N, 13037, 0385401, E, U SGNGGA.013555.00, 3144.3981657, N, 13037, 0385401, E, L, L	
202407101025D				\$GNRMC, 013556.00, A, 3144.39 2048, N, 13037.0385972, E, 0	
text/comma-separated-values		83 2024/07	7/10 10:38	\$GNGGA,013556.00,3144.3982948,N,13037.0385972,E,1,1 KGNBUC,013557,00,3144.398294751,N,13037.0385972,E,0	
				\$GNGGA, 013557.00, 3144.3982751, N, 13037.0386783, E, 1, 1	
geora.txt		2 954 2024/08	5/27 10:24		
e text/plain		2.0101 2024/05	5/2/10.24	\$GNRMC, 013558, 00, A, 3144, 3983420, N, 13037, 0387420, E, 0 \$GNGGA, 013558, 00, 3144, 3983420, N, 1307, 0387420, E, 1	
semidyna.txt				\$GNRMC, 013559.00, A, 3144.3983791, N, 13037.0387779, E, 0	
text/plain	8	887.5K 2024/05	5/27 10:29	\$GNGGA,013559.00,3144.3983791,N,13037.0387779,E,1,1	
				\$GWRHC, 015600.00, A, 5144.3984112, N, 15057.0586555, E, 0 \$GNGGA, 013600.00, 3144.3984112, N, 13057.0386535, E, 1, 1	
				\$GNRMC, 013601.00, A, 3144.3984346, N, 13037.0389348, E, 0	
				\$GNGGA,013601.00,3144.3984346,N,13037.0389348,E,1,11 \$GNBUC_013602.00.4.3144.3984593.N.13037.0389348,E,1,11	
				\$GNGGA, 013602.00, 3144.3984683, N, 13037.0390266, E, 1, 1	
				\$GNRMC, 013603.00, A, 3144.3984985, N, 13037.0390618, E, 0	
				\$GNGGA,013603.00,3144.3984985,N,13037.0390618,E,1,1 \$GNBUC_013604_00_4_3144_3985235_N_13037_039094_E_0	
				\$GNGGA, 013604.00, 3144.3985235, N, 13037.0390994, E, 1, 1	
SAF 内部共有ストレージ 合計: 27 72	GB 空き・23 92 GF	R	NJ	\$GNRIIC, 013605.00, A, 3144. 3985687, N, 13037.0391646, E, 0	
J				\$GNGGA,013605.00,3144.3985687,N,13037.0391646,E,1,1. \$GNRUC_013606_00_A_3144_3985772_N_13037_0391985_E_0	
		(۲ – – – – – – – – – – – – – – – – – –	~c	\$GNIGGA, 013606.00, 3144.3985772, N, 13037.0391885, E, 1, 1	
100 2 石削の支史 3		* 3] [- 0	\$GNRMC, 013607.00, A, 3144.3985785, N, 13037.0392309, E, 0	
		1			1
		V			

Documents

ログデータ

測点の**元期CSV**

スマホの中身です。

スマホはメモリーが少ないですから、たまにはお腹の中を掃除してください。

ログデータは、そのまま PC 版 KabutoDynaEXE でご利用になれますから、アン テナ高をメモしておいてください。

付録1 KabutoML_20240826以降のバージョン

テストデータファイルの作成方法

現在の受信機の近くで(1000m以内)実験用に観測したしたログファイル(例:202408151821P.csv)を「探索点 FILE」ボタンをタップして選択します。

reference.txtにし7 いファイル選択 例・202408151821P.csv が reference.txt に変換される 付録2

観測実験

CLAS(シーラス)アンドロイドアプリの作者本人が、

・リットーMGLR-9PC_Ri-AO で10点ぐらい観測

・それらの点をもう一度観測

両観測の較差ががどれぐらい出るかの実験をしました。結果は次のとおりでした。

厳密な測量では使えないかもしれませんが、**災害地、ネットが使えない場所では十分な精度**だと思います。

リットーMGLR-9PC_Ri-AO

付録3

パラメータファイルの作成方法

- (1)パラメータファイルのダウンロード
- 国土地理院のサイトから二つのパラメータをダウンロード解凍します。解凍先はダウンロードでも構いません。 ・定常時地殻変動補正サイト 補正パラメータダウンロード ITRF2014 https://positions.gsi.go.jp/cdcs/
- ・GSIGEO2011ジオイド・モデル 基盤地図情報 ジオイド・モデル https://fgd.gsi.go.jp/download/menu.php
- (2)パソコンで次ページ以降の「**取り出したデータを処理する前に**」で、semidyna.txt と geoid.txt を作成します。
- (3)PCとアンドロイドをUSBで接続して、2つのファイルを

PC > (スマホの名前) > 内部共有ストレージ > Android > data > jp.clas.ml.kabuto > files > Documents

の中に入れてください。

PC版マニュアルより

取り出したデータを処理する前に

CLASで観測された今期の座標を元期(げんき)の座標に変換することになり ますが、変換パラメータは国土地理院のサイトからダウンロードし、観測日 に合ったものを使ってください

パラメータファイルは2種類あります

- ・地殻変動パラメータ(3カ月ごとに公開)
- ・GSIGEO2011ジオイドモデル(約1年ごとに公開)

※毎回セットする必要はありません

※Microsoft Windows Desktop Runtimeのインストールのメッセージ が出たら、適宜ダウンロード・インストールしてください

ConvertITRF 取り出したデータを処理する前に

地殻変動パラメータ(3カ月ごとに公開) https://positions.gsi.go.jp/cdcs から、最新のパラメータファイルをダウンロード解凍し、ConvertITRF で変 換してから KabutoDynaEXE をお使いください

※毎回変換セットする必要はありません

オプログラルけ 国土地理院の	N地殻変動パーメータファイル(ITPE2014)を詰いな	KabutaD	woaEVE 7% 信子	3+31-	
「semidyna.txt」に変換します	2002 BUT 77 777170 (111120147 202207	, Kabutob	YNALKE CEA	. 20 ML	
国土地理院の定常時地殻変 ダウンロードURL: https://po	動補正サイトの補正バラメータITRF2014の最新のも) sitions.gsi.go.jp/cdcs/	のをお使いく	ださい。		
	2022/0	7/31更新	Created by	R. Tanaka	
					Û
				変換	2
				Ē	

① このボタンをクリックして、補正パラメータファイルを選択する

※パラメータファイルは KabutoDynaEXE フォルダ内に解凍してください

2 変換開始

変換終了

KabutoDynaEXE のフォルダに semidyna.txt が生成されます。

geoid 取り出したデータを処理する前に

GSIGEO2O11ジオイド・モデル(約1年ごとに公開) <u>https://fgd.gsi.go.jp/download/menu.php</u> から、ジオイド・モデルをダウンロード解凍して、geoid で変換してから お使いください

※毎回変換セットする必要はありません

R. Tanaka
R. Tanaka
変換 ②
···· ① _{変換} ②

このボタンをクリックして、ジオイド・モデルファイルを選択する

※ジオイド・モデルファイルは KabutoDynaEXE と同じフォルダ内に 解凍してください

2 変換開始

③ 変換終了

KabutoDynaEXE のフォルダに geoid.txt が生成されます。